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Abstract Effects of substituents on anion binding in
different urea based receptors have been examined using
density functional (B3LYP/6-311+G**) level of theory. The
complexes formed by a variety of substituted urea with a
halide anion (fluoride) and an oxy-anion (acetate) have
been calculated. The stronger complexes were predicted for
receptors with fluoride ion than that of acetate ion,
however, in water the preference was found to be reversed.
The pKa calculations showed the preferred sites of
deprotonation for positional isomers, while interacting with
anions. The position of the substituent in the receptor,
however, could change the preferred sites of deprotonation
compared to the site predicted with pKa values.
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Introduction

The development of simple receptors with suitable chromo-
phoric units capable of recognizing biologically relevant
anions like fluoride, chloride, phosphate and carboxylate has
attracted considerable interest [1–10]. In this regard, urea
based hydrogen bond donors and related derivatives have
been the focus of attention in recent years. Urea is one of the
most attractive anion receptor functionality owing to their

ability to participate in hydrogen-bonded adduct formation
and broad range of applications in several chemical disci-
plines [11–23]. Urea functionality has two relatively strong
hydrogen-bonding sites and participate in H-bonding either
through two –N(H) hydrogen atoms or through –C(O)
oxygen atom. Thus, urea derivatives functionalized with
various chromogenic or signaling unit(s) have been synthe-
sized for the recognition studies [13, 15–17, 19, 22–51].
Binding affinity of various urea-based receptors towards an
anionic analyte mainly governed by pendant unit attached to
the urea moiety [37–51]. Literature reports reveal that for
simple phenyl urea receptors, acidity of the urea –N(H)
hydrogens is affected by the presence of certain substituent in
the phenyl rings [52–56]. However, systematic study to
modulate the acidity of the urea –N(H) hydrogen and thereby
the binding affinity for anions through the substituent effect is
scarce in the literature [56].

To gain a better insight, we have studied the relative binding
affinities of urea and its various symmetric and asymmetric urea
derivatives ca. monophenyl urea, diphenyl urea, o-nitro, m-
nitro, p-nitro, p-trifluoromethane, p-methyl and di-p-nitro
substituted phenyl urea 1–9 (Scheme 1) with fluoride and
acetate ions using density functional level of theory (DFT).
The calculated results provide an understanding of the relative
acidity of two/one urea –N(H) hydrogen(s) in symmetric/
asymmetric derivatives and their relative affinities towards
these anions. Further, the studies also provide the information
towards the deprotonation possibility—which, however, is of
general interest to experimental chemists [54–56].

Computational details

All the calculations were performed using the Gaussian 03
E01 [57]. The geometries were fully optimized using
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B3LYP/6–311+G** level of theory. Harmonic force con-
stants were computed at the optimized geometries to
characterize the stationary points as minima. The interac-
tion energy is simply obtained by the energy of the complex
subtracted by the sum of energies of constituents. The
interaction is very strong due to charged hydrogen bonds;
thus, the basis set superposition error (BSSE) is expected to
be negligible compared with the magnitude of the total
interaction energies [48, 49, 58]. To calculate the pKa

values of molecules, we have considered the thermody-
namic cycle shown below.

The thermodynamic cycle yields the aqueous pKa for the
acid B-H, which is shown in Eq. 1 [59]. The gas phase free
energy of protonation is calculated at the same level of
theory used for the calculation of solvation free energy. The
free energy of solvation in water has been calculated using
self-consistent reaction field (SCRF) methods using the
conductor-like polarizable continuum model (CPCM) [60–
63].

ΔGaq ¼ ΔGgas þ ΔGhyd B�ð Þ þ ΔGhyd Hþð Þ � ΔGhyd B� Hð Þ;
At a given temperature T, the pKa is then given by, [64]

pKa ¼ G B�
gas

� ��G BHgas

� �þ ΔGhyd B�ð Þ�

�ΔGhyd BHð Þ � 269:0�=1:3644: ð1Þ

A dielectric constant (ε) of 78.4 (water) was used in
solvation calculations and the solvation-free energy of the
proton taken from the experimental ΔGhyd(H

+) is equal to
−264.61 kcal mol-1. The calculation of Ggas uses a reference
state of 1 atm and the calculations of ΔGhyd use a reference
state of 1 M. Converting the ΔGgas reference state (24.46 L

at 298.15 K) from 1 atm to 1 M is accomplished using
Eq. 2:

ΔGgas 1 Mð Þ ¼ ΔGgas 1 atmð Þ þ RTln 24:46ð Þ: ð2Þ

Single point solvent calculations were performed using
B3LYP/6–311+G** optimized geometries of receptors 1–9
and their corresponding complexes with anions employing
CPCM [60–63]. The free energies of solvation for fluoride
and acetate ions have been reproduced using the B3LYP/6–311
+G** level and are in very good agreement with the reported
experimental values, which are discussed below. Further, the
reliability of B3LYP method in this study comes through its
reproducibility of electron affinity data of the F atom [65].

Results and discussion

We selected simple urea molecules 1–9 to examine the effect
of the presence of electron donating and withdrawing
substituents on anion binding affinities by DFT calculations.
Urea molecules (1–9) are well known to form a 1:1 adduct
with anionic analytes like halides and oxyanions [11–56].
Anions bind with the urea –N(H) hydrogen atoms by the ion-
dipole interaction and the magnitude of the positive dipole
primarily determines the anion binding strength. Urea
molecules with different R and R1 groups (Scheme 1) are
expected to influence the positive dipole of each urea –N(H)
hydrogen atoms in the urea-based receptor molecules and
therefore their relative binding affinities. To investigate the
relative strength of these different substituted urea deriva-
tives, we have performed B3LYP/6–311+G** calculations to
obtain the optimized geometries of the urea derivatives 1–9
and their corresponding 1:1 adducts with F¯ and CH3COO¯
(Scheme 1) using Gaussian suite program [57].

Crystal structures reported for some urea derivatives
revealed a planar conformation [66]. However, results of
theoretical calculations reported on urea molecule tend to
suggest that this molecule prefer to adopt a nonplanar
conformation and this was in agreement with microwave
studies [67–73]. Non-planar conformation for urea was also
evident when the geometry for this molecule was optimized
at B3LYP/6–311+G** level of theory. The nitrogen atoms
were found to be pyramidalized by 7°. The most stable C2v

urea conformation was considered in this study [72, 73].
However, the phenyl substituted urea derivatives (3–9,
Scheme 1) were found to be planar when the geometry for
these molecules were optimized at the same level of theory.
The structures for 1, 3, and 9 were in good agreement with
the reported crystal structures [74–77].

To elucidate the electronic effect of various substituents
and their positional effect on the relative binding affinity of
the urea functionality towards anions, we have carried out

Scheme 1 Different urea receptors (1–9) employed in this study
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calculations on respective 1:1 adducts of F¯ and urea
derivatives, 1–9. Geometries for these adducts were fully
optimized at the B3LYP/6–311+G** level of theory (Fig. 1)
with electron withdrawing substituents like phenyl, −NO2

and −CF3 and electron donating substituent like −CH3

group. Two –N(H) hydrogen atoms of the urea moiety bind
with F¯ to yield a six-membered chelate ring with bent N—
H....F¯ angles. The calculated results suggest that the H-
bond donor ability can be attuned through substitution at
the pendant benzene rings (Fig. 1). Electron withdrawing
groups (−NO2 and −CF3) appreciably strengthen the N—
H....F¯ interaction energy and thereby shorten the intermo-
lecular distance between the F¯ and the H-bond acceptor
unit (Fig. 1 and Table 1). This is due to the greater positive
charge development on –N(H) hydrogen atoms of the urea
functionality. Effect of substitution with an electron
donating group like −CH3 (4) does not show any significant
effect on the binding affinity of the receptors towards F¯.
Among different nitro-derivative of receptors (6–9), bis-
substituted one (9) forms the strongest 1:1 adduct as
compared to the other mono-nitro derivatives (6–8)
(Fig. 1). The calculated binding energy for 9 with F¯ was
found to be 79.8 kcal mol-1 (Fig. 1). Recently, Fabbrizzi et
al. [55] have shown that the bis-nitro urea derivative (9)
forms a strong adduct with F¯ and on addition of another
equivalent of F¯ deprotonates the –N(H) proton [54–56,
74–77]. Optimized structures for adducts 1...F¯, 3...F¯ and
9...F¯, derived from respective symmetrical urea deriva-

tives revealed that intermolecular distances between two –N
(H) hydrogen atoms and the F¯ were equal. However,
intermolecular H-bond distances between two –N(H)
hydrogen atoms and the F¯ for unsymmetrical derivatives,
ca. 2, 4–8 were found to be different (Fig. 1). H...F¯
distance for –N(H) hydrogen, closer to the electron
withdrawing substituent were found to be relatively shorter
than the other –N(H) hydrogen atom while forming an 1:1
adduct.

The shorter H…F¯ interatomic distances would be more
susceptible towards deprotonation in presence of excess F¯
[54–56, 78]. The effect of electron–donating substituent on
the sites of deprotonation seemed to be opposite as one of
the two –N(H) hydrogen atoms that was closer to the
electron–donating functionality showed slightly longer
interatomic distance with the fluoride ion (Fig. 1). There-
fore, optimized geometries tend to suggest that the sites of
deprotonation of one of the two –N(H) hydrogen atoms of
urea derivatives could be tuned through remote substituent
effect.

Positional isomers 6, 7 and 8 did not show similar
binding affinity towards the fluoride ion. The order of
binding affinity followed the trend 8 > 7 > 6; 6 with nitro
functionality in the 2-position (ortho) was found to make a
weaker 1:1 adduct with fluoride ion as compared to the
other two positional isomers. The strong intramolecular
hydrogen bonding between the –N(H) hydrogen atom and
the nitro group of the pendant phenyl ring [54–56] in 6 was

Fig. 1 The optimized geome-
tries of 1–9 with fluoride ion
and their binding energies (in
kcal mol-1) at the B3LYP/6–311
+G** level. Calculated binding
energies using water as solvent
are given in parentheses. The
interatomic distances are
expressed in angstrom (Å)
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found to make this hydrogen less available for interaction
with the fluoride ion. As a result, the binding affinity was
largely dependent on the interaction with the other –N(H)
hydrogen atom. The calculated interatomic distances were
relatively more unsymmetrical in this case (Fig. 1); the
shorter –N-H...F¯ distance was observed for the –N(H)
hydrogen that was away from the nitro substituent. Thus,
one could expect that the site of deprotonation would be
different for this isomer 6 than that of 7 and 8 (Fig. 1).
Further, our calculated results are in good agreement with
the earlier experimental reports, which revealed that the
para-nitro-substituted urea receptors exhibited higher bind-
ing constant as compared to the urea with pendant phenyl
ring substituted with electron donating group [8, 29, 52–56,
75].

To examine the influence of solvent on the binding
affinity of fluoride ion with receptors 1–9, additional
calculations were performed in water employing single-
point solvent calculations with the optimized geometries of
receptors 1–9 and their complexes using CPCM continuum
model. The calculated binding energies were found to be
poor for F¯ with 1–9 (Fig. 1). The higher solvation free
energy for fluoride ion in water (−105.1 kcal mol−1)
reduces its interaction with the receptor molecules. The
large solvation free energy of F¯(−104.8 kcal mol−1) was
well reproduced (−105.1 kcal mol-1) using conductor-like
polarized continuum model (CPCM) at B3LYP/6–311+G**
level of theory [78]. Therefore, sensing fluoride ion in
protic media is a great challenge for experimentalists [1,
78–84]. Lewis acidic receptors, which can covalently
interact with the fluoride anions in aqueous medium are
being explored for this purpose [85].

The probable sites of deprotonation of these receptors
with anions can be predicted by pka calculations. We have
performed the pka calculations for 1, 4, 6 and 8,
respectively. The pka calculations were performed with
B3LYP/6–311+G** level of theory. Urea can be considered
as a case study to compare the calculated pka with the
available experimental data. As described in the computa-

tional section, the pka calculated for urea 1 was found to be
24.2 in good agreement with the experimental results [86–
88]. The relative acidity calculated for the –N(H) hydrogen
atoms of the urea group in 4, 6 and 8 are shown in Table 1.
For the unsymmetrical receptor 4, –N(H) hydrogen atom of
urea moiety attached to phenyl ring is more acidic than the
–N(H) hydrogen atom attached to tolyl ring, which is
expected due to a better electron donating ability of the
tolyl functionality than the typical phenyl group. The
influence of nitro group at para position in 8 showed much
lower pka values for –N(H) hydrogen atoms compared to
the parent urea molecule (Table 2). The –N(H) hydrogen
atom attached to nitro-phenyl moiety in 8 was found to be
more acidic than the one attached to phenyl group (Table 2).
Therefore, the preferred site of –NH deprotonation should
be from nitro-phenyl side in both 6 and 8, respectively. This
result is in agreement for receptor 8; however, the predicted
site of deprotonation for 6 from pka calculation differs from
the anion binding study results (Fig. 1). The binding of F¯
with 6 showed the deprotonation from the phenyl side and
corroborated by the results determined spectrophotometri-
cally [89, 90]. Therefore, it appears that the relative position
of substituent on the receptor molecule can also determine
the deprotonation site, which cannot be qualitatively
conceived by standard methods.

Urea is also known to be an efficient receptor for oxy-
anions like acetate, as it can form two N–H...O bonds with
two geminal oxygen atoms of the acetate ion [91]. Thus, we
have optimized these substituted urea derivatives with the
acetate ion. In general, the binding affinity of acetate
derivatives with these receptors was found to be weaker
than that of F¯ ion (Figs. 1 and 2). This is one of the
examples, where the basicity trend does not influence
the binding affinity of anions with receptor molecules [91].
The trend of binding energy for receptor molecules 1–9
with acetate ion was in general found to be similar to that of
F¯ ion.

Acetate also forms shorter –N(H)...O bond with more
acidic urea hydrogen atoms. Interestingly, in the case of
compound 6, the intramolecular hydrogen bond between
the –N(H) hydrogen and −NO2 group was completely

Table 1 Optimized intermolecular distances (Å) of complexes 1– 9

Structure N- - - -HA HA- - - -F¯ N- - -HB HB- - - -F¯

1 1.046 1.684 1.046 1.684

2 1.076 1.496 1.035 1.764

3 1.058 1.574 1.058 1.579

4 1.058 1.580 1.059 1.574

5 1.051 1.502 1.073 1.618

6 1.423 2.431 - - - - - - - - 1.041

7 1.079 1.479 1.052 1.615

8 1.089 1.442 1.046 1.652

9 1.069 1.520 1.069 1.520

Table 2 B3LYP/6–311+G** calculated pka for 1, 4, 6, and 8

Compound pka

Simple Urea (1) Deprotonation at -N(H) 24.22

Phenyl-toluene urea (4) Deprotonation at phenyl-N(H) 23.02

Deprotonation at Tolyl-N(H) 23.38

Phenyl-(o-NO2 benzene)
urea (6)

Deprotonation at phenyl-N(H) 22.12

Deprotonation at nitro-N(H) 21.73

Phenyl-(p-NO2 benzene)
urea (8)

Deprotonation at phenyl-N(H) 18.88

Deprotonation at nitro-N(H) 16.73
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disturbed upon binding of the acetate ion and this
observation was different from that of complex 6:F¯.
However, the order of binding affinity followed the trend
for the positional nitro isomers 8 > 7 > 6, similar to fluoride
ion complex (Fig. 3).

The binding affinity of acetate anion with receptors 1–9
is weaker in aqueous phase compared to gas phase results.
The lower binding affinity of acetate anion with 1–9 in
water is due to the higher solvation energy of acetate anion
(Fig. 3) [92]. B3LYP/6–311+G** level predicted the free
energy of solvation (−75.7 kcal mol−1) in good agreement
with the reported experimental result (−77.0 kcal mol−1) for
acetate. However, the binding affinity of acetate ion with

receptors 1–9 is stronger in water than that of F¯ (Fig. 3). It
appears that the recognition of oxy-anions like acetate is
also of considerable challenge for chemists in polar solvent
like water [92]. These results show that the recognition of
anions is largely dependent on surrounding medium besides
the factors like basicity, co-operative binding responsible
for the ion recognition process [78–84, 93–96]. Indeed,
very few receptors which can achieve anion binding in
water have been developed so far.

Even more exceptional are those which are able to bind
fluoride and oxy-anions in water and nowadays a very
appealing target as synthetic receptors.

Conclusions

In this work, we have shown that the remote electronic
effects can tune the binding affinity of anions with urea
receptor molecules. However, the relative position of
substituents is also playing an important role to control
the binding affinity with such receptors. Electron with-
drawing group(s) show(s) a marked influence on the site of
–N(H) deprotonation in the unsymmetrically substituted
receptor molecule, when exposed to the excess of anion.
The sites of deprotonation are primarily dependent on the
nature of the substituents and their relative positions in the
receptor molecules. Further, studies reveal that the solvent
medium is important for the selective binding of anions
with the receptor molecules.

Fig. 2 The optimized
geometries of 1–9 with acetate
ion and the binding energies
(kcal mol-1) at the B3LYP/
6–311+G** level. Calculated
binding energies using water as
solvent are provided in
parentheses. The interatomic
distances are expressed in
angstrom (Å)

Fig. 3 Graphical representation for the interaction energy of the
respective urea-anion complex
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